Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 70
1.
Brain Commun ; 6(2): fcae045, 2024.
Article En | MEDLINE | ID: mdl-38434219

In the past 2 decades, several attempts have been made to promote a correct diagnosis and possible restorative interventions in patients suffering from disorders of consciousness. Sensory stimulation has been proved to be useful in sustaining the level of arousal/awareness and to improve behavioural responsiveness with a significant effect on oro-motor functions. Recently, action observation has been proposed as a stimulation strategy in patients with disorders of consciousness, based on neurophysiological evidence that the motor cortex can be activated not only during action execution but also when actions are merely observed in the absence of motor output, or during listening to action sounds and speech. This mechanism is provided by the activity of mirror neurons. In the present study, a group of patients with disorders of consciousness (11 males, 4 females; median age: 55 years; age range: 19-74 years) underwent task-based functional MRI in which they had, in one condition, to observe and listen to the sound of mouth actions, and in another condition, to listen to verbs with motor or abstract content. In order to verify the presence of residual activation of the mirror neuron system, the brain activations of patients were compared with that of a group of healthy individuals (seven males, eight females; median age: 33.4 years; age range: 24-65 years) performing the same tasks. The results show that brain activations were lower in patients with disorders of consciousness compared with controls, except for primary auditory areas. During the audiovisual task, 5 out of 15 patients with disorders of consciousness showed only residual activation of low-level visual and auditory areas. Activation of high-level parieto-premotor areas was present in six patients. During the listening task, three patients showed only low-level activations, and six patients activated also high-level areas. Interestingly, in both tasks, one patient with a clinical diagnosis of vegetative state showed activations of high-level areas. Region of interest analysis on blood oxygen level dependent signal change in temporal, parietal and premotor cortex revealed a significant linear relation with the level of clinical functioning, assessed with coma recovery scale-revised. We propose a classification of the patient's response based on the presence of low-level and high-level activations, combined with the patient's functional level. These findings support the use of action observation and listening as possible stimulation strategies in patients with disorders of consciousness and highlight the relevance of combined methods based on functional assessment and brain imaging to provide more detailed neuroanatomical specificity about residual activated areas at both cortical and subcortical levels.

2.
Eur J Neurol ; 31(6): e16266, 2024 Jun.
Article En | MEDLINE | ID: mdl-38469975

BACKGROUND AND PURPOSE: Thalamic alterations have been reported as a major feature in presymptomatic and symptomatic patients carrying the C9orf72 mutation across the frontotemporal dementia-amyotrophic lateral sclerosis (ALS) spectrum. Specifically, the pulvinar, a high-order thalamic nucleus and timekeeper for large-scale cortical networks, has been hypothesized to be involved in C9orf72-related neurodegenerative diseases. We investigated whether pulvinar volume can be useful for differential diagnosis in ALS C9orf72 mutation carriers and noncarriers and how underlying functional connectivity changes affect this region. METHODS: We studied 19 ALS C9orf72 mutation carriers (ALSC9+) accurately matched with wild-type ALS (ALSC9-) and ALS mimic (ALSmimic) patients using structural and resting-state functional magnetic resonance imaging data. Pulvinar volume was computed using automatic segmentation. Seed-to-voxel functional connectivity analyses were performed using seeds from a pulvinar functional parcellation. RESULTS: Pulvinar structural integrity had high discriminative values for ALSC9+ patients compared to ALSmimic (area under the curve [AUC] = 0.86) and ALSC9- (AUC = 0.77) patients, yielding a volume cutpoint of approximately 0.23%. Compared to ALSmimic, ALSC9- showed increased anterior, inferior, and lateral pulvinar connections with bilateral occipital-temporal-parietal regions, whereas ALSC9+ showed no differences. ALSC9+ patients when compared to ALSC9- patients showed reduced pulvinar-occipital connectivity for anterior and inferior pulvinar seeds. CONCLUSIONS: Pulvinar volume could be a differential biomarker closely related to the C9orf72 mutation. A pulvinar-cortical circuit dysfunction might play a critical role in disease progression and development, in both the genetic phenotype and ALS wild-type patients.


Amyotrophic Lateral Sclerosis , C9orf72 Protein , Magnetic Resonance Imaging , Mutation , Pulvinar , Aged , Female , Humans , Male , Middle Aged , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/physiopathology , Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/genetics , Frontotemporal Dementia/genetics , Frontotemporal Dementia/physiopathology , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/pathology , Heterozygote , Pulvinar/diagnostic imaging , Pulvinar/physiopathology , Pulvinar/pathology
3.
Ann Clin Transl Neurol ; 11(5): 1122-1134, 2024 May.
Article En | MEDLINE | ID: mdl-38389222

OBJECTIVE: In elderly people loneliness represents a risk factor for dementia and may negatively impact on mental and physical health. The specific contribute of loneliness to cognitive and behavioral functioning have not yet been determined in amyotrophic lateral sclerosis (ALS). Our hypothesis was that loneliness may be related to motor dysfunction with a negative impact on cognitive and behavioral decline, possibly related to specific cortical involvement. METHODS: In 200 ALS patients (ALSpts) and 50 healthy controls (HCs) we measured loneliness, mood, and quality of life (QoL). ALSpts underwent comprehensive clinical, genetic, and neuropsychological assessment to define phenotypes. Seventy-seven ALSpts performed 3T MRI scans to measure cortical thickness. Between-group, partial correlation and regression analyses were used to examined clinical, neuropsychological, and cortical signatures of loneliness. RESULTS: Feelings of loneliness were documented in 38% of ALSpts (ALS/L+pts) and in 47% of HCs. In both groups loneliness was associated with anxiety (P < 0.001), depression (P ≤ 0.005), and poor QoL (P < 0.001). ALS/L+pts had similar motor dysfunctions and cognitive abilities than non-lonely ALSpts, but distinct behavioral profiles (P ≤ 0.005) and frontoparietal involvement (P < 0.05). Loneliness in ALS is related to behavioral changes, apathy, and emotional dysregulation (P < 0.001). INTERPRETATION: Our cross-sectional study indicates that, in ALS, the satisfaction of social environment is associated with a sense of life well-being that is not limited to the motor status, proving instead that loneliness can impact on disease-related neurobehavioral changes with a possible flashback on brain architecture. This suggests that sociality could promote personal resilience against behavioral and affective decline in ALS.


Amyotrophic Lateral Sclerosis , Loneliness , Quality of Life , Humans , Amyotrophic Lateral Sclerosis/physiopathology , Amyotrophic Lateral Sclerosis/psychology , Amyotrophic Lateral Sclerosis/diagnostic imaging , Male , Loneliness/psychology , Female , Aged , Middle Aged , Magnetic Resonance Imaging , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnostic imaging , Depression/physiopathology
4.
Article En | MEDLINE | ID: mdl-38383154

BACKGROUND: Spinal cord damage is a feature of many spinocerebellar ataxias (SCAs), but well-powered in vivo studies are lacking and links with disease severity and progression remain unclear. Here we characterise cervical spinal cord morphometric abnormalities in SCA1, SCA2, SCA3 and SCA6 using a large multisite MRI dataset. METHODS: Upper spinal cord (vertebrae C1-C4) cross-sectional area (CSA) and eccentricity (flattening) were assessed using MRI data from nine sites within the ENIGMA-Ataxia consortium, including 364 people with ataxic SCA, 56 individuals with preataxic SCA and 394 nonataxic controls. Correlations and subgroup analyses within the SCA cohorts were undertaken based on disease duration and ataxia severity. RESULTS: Individuals in the ataxic stage of SCA1, SCA2 and SCA3, relative to non-ataxic controls, had significantly reduced CSA and increased eccentricity at all examined levels. CSA showed large effect sizes (d>2.0) and correlated with ataxia severity (r<-0.43) and disease duration (r<-0.21). Eccentricity correlated only with ataxia severity in SCA2 (r=0.28). No significant spinal cord differences were evident in SCA6. In preataxic individuals, CSA was significantly reduced in SCA2 (d=1.6) and SCA3 (d=1.7), and the SCA2 group also showed increased eccentricity (d=1.1) relative to nonataxic controls. Subgroup analyses confirmed that CSA and eccentricity are abnormal in early disease stages in SCA1, SCA2 and SCA3. CSA declined with disease progression in all, whereas eccentricity progressed only in SCA2. CONCLUSIONS: Spinal cord abnormalities are an early and progressive feature of SCA1, SCA2 and SCA3, but not SCA6, which can be captured using quantitative MRI.

5.
Ann Clin Transl Neurol ; 11(3): 686-697, 2024 Mar.
Article En | MEDLINE | ID: mdl-38234062

OBJECTIVE: The resting-state functional connectome has not been extensively investigated in amyotrophic lateral sclerosis (ALS) spectrum disease, in particular in relationship with patients' genetic status. METHODS: Here we studied the network-to-network connectivity of 19 ALS patients carrying the C9orf72 hexanucleotide repeat expansion (C9orf72+), 19 ALS patients not affected by C9orf72 mutation (C9orf72-), and 19 ALS-mimic patients (ALSm) well-matched for demographic and clinical variables. RESULTS: When compared with ALSm, we observed greater connectivity of the default mode and frontoparietal networks with the visual network for C9orf72+ patients (P = 0.001). Moreover, the whole-connectome showed greater node degree (P < 0.001), while sensorimotor cortices resulted isolated in C9orf72+. INTERPRETATION: Our results suggest a crucial involvement of extra-motor functions in ALS spectrum disease. In particular, alterations of the visual cortex may have a pathogenic role in C9orf72-related ALS. The prominent feature of these patients would be increased visual system connectivity with the networks responsible of the functional balance between internal and external attention.


Amyotrophic Lateral Sclerosis , Connectome , Humans , Magnetic Resonance Imaging , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/genetics , DNA Repeat Expansion/genetics , Proteins/genetics , Mutation
6.
J Headache Pain ; 25(1): 7, 2024 Jan 11.
Article En | MEDLINE | ID: mdl-38212704

BACKGROUND: Despite hypothalamus has long being considered to be involved in the pathophysiology of cluster headache, the inconsistencies of previous neuroimaging studies and a limited understanding of the hypothalamic areas involved, impede a comprehensive interpretation of its involvement in this condition. METHODS: We used an automated algorithm to extract hypothalamic subunit volumes from 105 cluster headache patients (57 chronic and 48 episodic) and 59 healthy individuals; after correcting the measures for the respective intracranial volumes, we performed the relevant comparisons employing logist regression models. Only for subunits that emerged as abnormal, we calculated their correlation with the years of illness and the number of headache attacks per day, and the effects of lithium treatment. As a post-hoc approach, using the 7 T resting-state fMRI dataset from the Human Connectome Project, we investigated whether the observed abnormal subunit, comprising the paraventricular nucleus and preoptic area, shows robust functional connectivity with the mesocorticolimbic system, which is known to be modulated by oxytocin neurons in the paraventricular nucleus and that is is abnormal in chronic cluster headache patients. RESULTS: Patients with chronic (but not episodic) cluster headache, compared to control participants, present an increased volume of the anterior-superior hypothalamic subunit ipsilateral to the pain, which, remarkably, also correlates significantly with the number of daily attacks. The post-hoc approach showed that this hypothalamic area presents robust functional connectivity with the mesocorticolimbic system under physiological conditions. No evidence of the effects of lithium treatment on this abnormal subunit was found. CONCLUSIONS: We identified the ipsilateral-to-the-pain antero-superior subunit, where the paraventricular nucleus and preoptic area are located, as the key hypothalamic region of the pathophysiology of chronic cluster headache. The significant correlation between the volume of this area and the number of daily attacks crucially reinforces this interpretation. The well-known roles of the paraventricular nucleus in coordinating autonomic and neuroendocrine flow in stress adaptation and modulation of trigeminovascular mechanisms offer important insights into the understanding of the pathophysiology of cluster headache.


Cluster Headache , Humans , Cluster Headache/therapy , Pain , Headache , Hypothalamus/diagnostic imaging , Lithium Compounds
8.
Front Neurol ; 14: 1279616, 2023.
Article En | MEDLINE | ID: mdl-37965172

Introduction: Within Pediatric Cerebellar Ataxias (PCAs), patients with non-progressive ataxia (NonP) surprisingly show postural motor behavior comparable to that of healthy controls, differently to slow-progressive ataxia patients (SlowP). This difference may depend on the building of compensatory strategies of the intact areas in NonP brain network. Methods: Eleven PCAs patients were recruited: five with NonP and six with SlowP. We assessed volumetric and axonal bundles alterations with a multimodal approach to investigate whether eventual spared connectivity between basal ganglia and cerebellum explains the different postural motor behavior of NonP and SlowP patients. Results: Cerebellar lobules were smaller in SlowP patients. NonP patients showed a lower number of streamlines in the cerebello-thalamo-cortical tracts but a generalized higher integrity of white matter tracts connecting the cortex and the basal ganglia with the cerebellum. Discussion: This work reveals that the axonal bundles connecting the cerebellum with basal ganglia and cortex demonstrate a higher integrity in NonP patients. This evidence highlights the importance of the cerebellum-basal ganglia connectivity to explain the different postural motor behavior of NonP and SlowP patients and support the possible compensatory role of basal ganglia in patients with stable cerebellar malformation.

9.
Sci Rep ; 13(1): 17355, 2023 10 13.
Article En | MEDLINE | ID: mdl-37833302

Biomarker-based differential diagnosis of the most common forms of dementia is becoming increasingly important. Machine learning (ML) may be able to address this challenge. The aim of this study was to develop and interpret a ML algorithm capable of differentiating Alzheimer's dementia, frontotemporal dementia, dementia with Lewy bodies and cognitively normal control subjects based on sociodemographic, clinical, and magnetic resonance imaging (MRI) variables. 506 subjects from 5 databases were included. MRI images were processed with FreeSurfer, LPA, and TRACULA to obtain brain volumes and thicknesses, white matter lesions and diffusion metrics. MRI metrics were used in conjunction with clinical and demographic data to perform differential diagnosis based on a Support Vector Machine model called MUQUBIA (Multimodal Quantification of Brain whIte matter biomArkers). Age, gender, Clinical Dementia Rating (CDR) Dementia Staging Instrument, and 19 imaging features formed the best set of discriminative features. The predictive model performed with an overall Area Under the Curve of 98%, high overall precision (88%), recall (88%), and F1 scores (88%) in the test group, and good Label Ranking Average Precision score (0.95) in a subset of neuropathologically assessed patients. The results of MUQUBIA were explained by the SHapley Additive exPlanations (SHAP) method. The MUQUBIA algorithm successfully classified various dementias with good performance using cost-effective clinical and MRI information, and with independent validation, has the potential to assist physicians in their clinical diagnosis.


Alzheimer Disease , Magnetic Resonance Imaging , Humans , Diagnosis, Differential , Magnetic Resonance Imaging/methods , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Biomarkers , Machine Learning , Algorithms
10.
J Headache Pain ; 24(1): 86, 2023 Jul 14.
Article En | MEDLINE | ID: mdl-37452281

BACKGROUND: Mindfulness gained considerable attention for migraine management, but RCTs are lacking. We aimed to assess the efficacy of a six-sessions mindfulness-based treatment added to treatment as usual (TaU) in patients with Chronic Migraine (CM) and Medication Overuse Headache (MOH) on headache frequency, medication intake, quality of life, disability, depression and anxiety, cutaneous allodynia, awareness of inner states, work-related difficulties, and disease cost. METHODS: In this Phase-III single-blind RCT carried out in a specialty Italian headache center, 177 patients with CM and MOH were randomized 1:1 to either TaU (withdrawal from overused drugs, education on proper medication use and lifestyle issues, and tailored prophylaxis) or mindfulness-based intervention added to TaU (TaU + MIND). The mindfulness-based intervention consisted of six group session of mindfulness practice and 7-10 min daily self-practice. The primary endpoint was the achievement of ≥ 50% headache frequency reduction at 12 months compared to baseline, and was analyzed on an intention-to-treat principle using Pearson's Chi-Squared test. Secondary endpoints included medication intake, quality of life (QoL), disability, depression and anxiety, cutaneous allodynia, awareness of inner states, work-related difficulties, and disease cost. The secondary endpoints were analyzed using per-protocol linear mixed models. RESULTS: Out of the 177 participants 89 were randomized to TaU and 88 to TaU + MIND. Patients in the TaU + MIND group outperformed those in TaU for the primary endpoint (78.4% vs. 48.3%; p < 0.0001), and showed superior improvement in headache frequency, QoL and disability, headache impact, loss of productive time, medication intake, and in total, indirect and direct healthcare costs. CONCLUSIONS: A mindfulness-based treatment composed of six-week session and 7-10 min daily self-practice added on to TaU is superior to TaU alone for the treatment of patients with CM and MOH. TRIAL REGISTRATION: MIND-CM was registered on clinicaltrials.gov (NCT03671681) on14/09/2018.


Headache Disorders, Secondary , Migraine Disorders , Mindfulness , Humans , Mindfulness/methods , Quality of Life , Treatment Outcome , Single-Blind Method , Hyperalgesia , Migraine Disorders/drug therapy , Headache , Headache Disorders, Secondary/drug therapy
11.
Phys Med ; 112: 102610, 2023 Aug.
Article En | MEDLINE | ID: mdl-37331082

PURPOSE: The use of topological metrics to derive quantitative descriptors from structural connectomes is receiving increasing attention but deserves specific studies to investigate their reproducibility and variability in the clinical context. This work exploits the harmonization of diffusion-weighted acquisition for neuroimaging data performed by the Italian Neuroscience and Neurorehabilitation Network initiative to obtain normative values of topological metrics and to investigate their reproducibility and variability across centers. METHODS: Different topological metrics, at global and local level, were calculated on multishell diffusion-weighted data acquired at high-field (e.g. 3 T) Magnetic Resonance Imaging scanners in 13 different centers, following the harmonization of the acquisition protocol, on young and healthy adults. A "traveling brains" dataset acquired on a subgroup of subjects at 3 different centers was also analyzed as reference data. All data were processed following a common processing pipeline that includes data pre-processing, tractography, generation of structural connectomes and calculation of graph-based metrics. The results were evaluated both with statistical analysis of variability and consistency among sites with the traveling brains range. In addition, inter-site reproducibility was assessed in terms of intra-class correlation variability. RESULTS: The results show an inter-center and inter-subject variability of <10%, except for "clustering coefficient" (variability of 30%). Statistical analysis identifies significant differences among sites, as expected given the wide range of scanners' hardware. CONCLUSIONS: The results show low variability of connectivity topological metrics across sites running a harmonised protocol.


Connectome , Adult , Humans , Connectome/methods , Reproducibility of Results , Benchmarking , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging
12.
Brain Sci ; 13(4)2023 Mar 23.
Article En | MEDLINE | ID: mdl-37190492

The literature has long established the association between aging and frailty, with emerging evidence pointing to a relationship between frailty and SARS-CoV-2 contagion. The possible neurological consequences of SARS-CoV-2 infection, associated with physical and cognitive frailty, could lead to a worsening of Parkinson's disease (PD) in infected patients or-more rarely-to an increase in the Parkinsonian symptomatology. A possible link between those clinical pictures could be identified in vitamin D deficiency, while the whole process would appear to be associated with alterations in the microbiota-intestine-brain axis that fall within the α-Synuclein Origin site and Connectome (SOC) model, and allow for the identification of a body-first PD and a brain-first PD. The model of care for this condition must consider intrinsic and extrinsic variables so that care by a multidisciplinary team can be successfully predicted. A multidimensional screening protocol specifically designed to identify people at risk or in the early stages of the disease should begin with the investigation of indices of frailty and microbiota-intestine-brain axis alterations, with a new focus on cases of hypovitaminosis D.

13.
Phys Med ; 110: 102577, 2023 Jun.
Article En | MEDLINE | ID: mdl-37126963

Initiatives for the collection of harmonized MRI datasets are growing continuously, opening questions on the reliability of results obtained in multi-site contexts. Here we present the assessment of the brain anatomical variability of MRI-derived measurements obtained from T1-weighted images, acquired according to the Standard Operating Procedures, promoted by the RIN-Neuroimaging Network. A multicentric dataset composed of 77 brain T1w acquisitions of young healthy volunteers (mean age = 29.7 ± 5.0 years), collected in 15 sites with MRI scanners of three different vendors, was considered. Parallelly, a dataset of 7 "traveling" subjects, each undergoing three acquisitions with scanners from different vendors, was also used. Intra-site, intra-vendor, and inter-site variabilities were evaluated in terms of the percentage standard deviation of volumetric and cortical thickness measures. Image quality metrics such as contrast-to-noise and signal-to-noise ratio in gray and white matter were also assessed for all sites and vendors. The results showed a measured global variability that ranges from 11% to 19% for subcortical volumes and from 3% to 10% for cortical thicknesses. Univariate distributions of the normalized volumes of subcortical regions, as well as the distributions of the thickness of cortical parcels appeared to be significantly different among sites in 8 subcortical (out of 17) and 21 cortical (out of 68) regions of i nterest in the multicentric study. The Bland-Altman analysis on "traveling" brain measurements did not detect systematic scanner biases even though a multivariate classification approach was able to classify the scanner vendor from brain measures with an accuracy of 0.60 ± 0.14 (chance level 0.33).


Brain , Magnetic Resonance Imaging , Humans , Young Adult , Adult , Reproducibility of Results , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Neuroimaging , Signal-To-Noise Ratio
14.
Neuroimage Clin ; 38: 103400, 2023.
Article En | MEDLINE | ID: mdl-37068310

OBJECTIVE: C9orf72 mutation carriers with different neurological phenotypes show cortical and subcortical atrophy in multiple different brain regions, even in pre-symptomatic phases. Despite there is a substantial amount of knowledge, small sample sizes, clinical heterogeneity, as well as different choices of image analysis may hide anatomical abnormalities that are unique to amyotrophic lateral sclerosis (ALS) patients with this genotype or that are indicative of the C9orf72-specific trait overlain in fronto-temporal dementia patients. METHODS: Brain structural and resting state functional magnetic imaging was obtained in 24 C9orf72 positive (ALSC9+) ALS patients paired for burden disease with 24 C9orf72 negative (ALSC9-) ALS patients. A comprehensive structural evaluation of cortical thickness and subcortical volumes between ALSC9+ and ALSC9- patients was performed while a region of interest (ROI)-ROI analysis of functional connectivity was implemented to assess functional alterations among abnormal cortical and subcortical regions. Results were corrected for multiple comparisons. RESULTS: Compared to ALSC9- patients, ALSC9+ patients exhibited extensive disease-specific patterns of thalamo-cortico-striatal atrophy, supported by functional alterations of the identified abnormal regions. Cortical thinning was most pronounced in posterior areas and extended to frontal regions. Bilateral atrophy of the mediodorsal and pulvinar nuclei was observed, emphasizing a focal rather than global thalamus atrophy. Volume loss in a large portion of bilateral caudate and left putamen was reported. The marked reduction of functional connectivity observed between the left posterior thalamus and almost all the atrophic cortical regions support the central role of the thalamus in the pathogenic mechanism of C9orf72-mediated disease. CONCLUSIONS: These findings constitute a coherent and robust picture of ALS patients with C9orf72-mediated disease, unveiling a specific structural and functional characterization of thalamo-cortico-striatal circuit alteration. Our study introduces new evidence in the characterization of the pathogenic mechanisms of C9orf72 mutation.


Amyotrophic Lateral Sclerosis , Humans , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/genetics , Magnetic Resonance Imaging , Mutation/genetics , Atrophy
15.
Mov Disord ; 38(4): 665-675, 2023 04.
Article En | MEDLINE | ID: mdl-36799493

BACKGROUND AND OBJECTIVES: Spinocerebellar ataxias (SCAs) are autosomal dominant disorders with extensive clinical and genetic heterogeneity. We recently identified a form of SCA transmitted with a digenic pattern of inheritance caused by the concomitant presence of an intermediate-length expansion in TATA-box binding protein gene (TBP40-46 ) and a heterozygous pathogenic variant in the Stip1-homologous and U-Box containing protein 1 gene (STUB1). This SCATBP/STUB1 represents the first example of a cerebellar disorder in which digenic inheritance has been identified. OBJECTIVES: We studied a large cohort of patients with SCATBP/STUB1 with the aim of describing specific clinical and neuroimaging features of this distinctive genotype. METHODS: In this observational study, we recruited 65 affected and unaffected family members from 21 SCATBP/STUB1 families and from eight families with monogenic SCA17. Their characteristics and phenotypes were compared with those of 33 age-matched controls. RESULTS: SCATBP/STUB1 patients had multi-domain dementia with a more severe impairment in respect to patient carrying only fully expanded SCA17 alleles. Cerebellar volume and thickness of cerebellar cortex were reduced in SCATBP/STUB1 compared with SCA17 patients (P = 0.03; P = 0.008). Basal ganglia volumes were reduced in both patient groups, as compared with controls, whereas brainstem volumes were significantly reduced in SCATBP/STUB1 , but not in SCA17 patients. CONCLUSIONS: The identification of the complex SCATBP/STUB1 phenotype may impact on diagnosis and genetic counseling in the families with both hereditary and sporadic ataxia. The independent segregation of TBP and STUB1 alleles needs to be considered for recurrence risk and predictive genetic tests. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Ataxia , Dementia , Spinocerebellar Ataxias , Humans , Ataxia/genetics , Dementia/genetics , Genotype , Phenotype , Spinocerebellar Ataxias/diagnostic imaging , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/metabolism , TATA-Box Binding Protein/genetics , TATA-Box Binding Protein/metabolism , Trinucleotide Repeat Expansion , Ubiquitin-Protein Ligases/genetics
16.
Ann Clin Transl Neurol ; 10(3): 384-396, 2023 03.
Article En | MEDLINE | ID: mdl-36638220

AIM: When studying brain networks in patients with Disorders of Consciousness (DoC), it is important to evaluate the structural integrity of networks in addition to their functional activity. Here, we investigated whether structural MRI, together with clinical variables, can be useful for diagnostic purposes and whether a quantitative analysis is feasible in a group of chronic DoC patients. METHODS: We studied 109 chronic patients with DoC and emerged from DoC with structural MRI: 65 in vegetative state/unresponsive wakefulness state (VS/UWS), 34 in minimally conscious state (MCS), and 10 with severe disability. MRI data were analyzed through qualitative and quantitative approaches. RESULTS: The qualitative MRI analysis outperformed the quantitative one, which resulted to be hardly feasible in chronic DoC patients. The results of the qualitative approach showed that the structural integrity of HighOrder networks, altogether, had better diagnostic accuracy than LowOrder networks, particularly when the model included clinical variables (AUC = 0.83). Diagnostic differences between VS/UWS and MCS were stronger in anoxic etiology than vascular and traumatic etiology. MRI data of all LowOrder and HighOrder networks correlated with the clinical score. The integrity of the left hemisphere was associated with a better clinical status. CONCLUSIONS: Structural integrity of brain networks is sensitive to clinical severity. When patients are chronic, the qualitative analysis of MRI data is indicated.


Brain , Consciousness Disorders , Humans , Consciousness Disorders/diagnostic imaging , Brain/diagnostic imaging , Persistent Vegetative State/diagnostic imaging , Consciousness , Magnetic Resonance Imaging/methods
17.
Ann Clin Transl Neurol ; 10(2): 213-224, 2023 02.
Article En | MEDLINE | ID: mdl-36599092

OBJECTIVE: Spinal cord degeneration is a hallmark of amyotrophic lateral sclerosis. The assessment of gray matter and white matter cervical spinal cord atrophy across clinical stages defined using the King's staging system could advance the understanding of amyotrophic lateral sclerosis progression. METHODS: We assessed the in vivo spatial pattern of gray and white matter atrophy along cervical spinal cord (C2 to C6 segments) using 2D phase-sensitive inversion recovery imaging in a cohort of 44 amyotrophic lateral sclerosis patients, evaluating its change across the King's stages and the correlation with disability scored by the amyotrophic lateral sclerosis functional rating scale revised (ALSFRS-R) and disease duration. A mathematical model inferring the potential onset of cervical gray matter atrophy was developed. RESULTS: In amyotrophic lateral sclerosis patients at King's stage 1, significant cervical spinal cord alterations were mainly identified in gray matter, whereas they involved both gray and white matter in patients at King's stage ≥ 2. Gray and white matter areas correlated with clinical disability at all cervical segments. C3-C4 level was the segment showing early gray matter atrophy starting about 7 to 20 months before symptom onset according to our model. INTERPRETATION: Our findings suggest that cervical spinal cord atrophy spreads from gray to white matter across King's stages in amyotrophic lateral sclerosis, making spinal cord magnetic resonance imaging an in vivo assessment tool to measure the progression of the disease.


Amyotrophic Lateral Sclerosis , Cervical Cord , Humans , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/pathology , Cervical Cord/diagnostic imaging , Gray Matter/diagnostic imaging , Gray Matter/pathology , Atrophy/pathology
18.
Ortho Sci., Orthod. sci. pract ; 16(64): 116-118, 2023. ilus
Article Pt | BBO | ID: biblio-1551968

Resumo Introdução: As ligaduras elastoméricas, também conhecidas popularmente como "elastics", são amplamente utilizadas na ortodontia fixa há bastante tempo. Contudo, além da função de apreender o arco aos slots dos bráquetes, elas também podem ser utilizadas para correção de pequenas giroversões dentárias. Diversas marcas comerciais já desenvolveram um modelo específico de acessório elastomérico para desempenhar essa função, nomeado como "rotator"; porém, por ter um tamanho padronizado, acabam provocando sobrecorreção do movimento em determinadas situações da prática clínica. Descrição da técnica: Desta maneira, o objetivo deste artigo é ilustrar a utilização e versatilidade dos famosos "elastics", posicionados de três formas diferentes nas aletas dos bráquetes, para realizar a correção de pequenas giroversões unitárias na ortodontia fixa. Conclusão: A versatilidade de seu uso permite diferentes magnitudes de correção com praticidade (AU)


Abstract Introduction: Elastomeric ligatures, popularly known as "elastics" have been widely used in orthodontic treatment with fixed appliances for a long time. However, in addition to the function of fixating the archwires to the bracket slots, they may also be used for the correction of minor tooth rotations. Various commercial brands have developed a specific model of elastomeric accessory to perform this function, known as "rotation wedge". However, as they are of a standardized size, they end up causing overcorrection of the movement in certain clinical situations. Technique description: This article aimed to illustrate the use and versatility of the famous "elastics", positioned in 3 different ways on the bracket tie wings to effectuate correction of small single tooth rotations in orthodontic treatment with fixed appliances. Conclusion: The versatility of their use allows different magnitudes of correction with practicality. (AU)


Orthodontics, Corrective , Orthodontic Brackets , Elastomers
19.
Phys Med ; 104: 93-100, 2022 Dec.
Article En | MEDLINE | ID: mdl-36379160

PURPOSE: Generating big-data is becoming imperative with the advent of machine learning. RIN-Neuroimaging Network addresses this need by developing harmonized protocols for multisite studies to identify quantitative MRI (qMRI) biomarkers for neurological diseases. In this context, image quality control (QC) is essential. Here, we present methods and results of how the RIN performs intra- and inter-site reproducibility of geometrical and image contrast parameters, demonstrating the relevance of such QC practice. METHODS: American College of Radiology (ACR) large and small phantoms were selected. Eighteen sites were equipped with a 3T scanner that differed by vendor, hardware/software versions, and receiver coils. The standard ACR protocol was optimized (in-plane voxel, post-processing filters, receiver bandwidth) and repeated monthly. Uniformity, ghosting, geometric accuracy, ellipse's ratio, slice thickness, and high-contrast detectability tests were performed using an automatic QC script. RESULTS: Measures were mostly within the ACR tolerance ranges for both T1- and T2-weighted acquisitions, for all scanners, regardless of vendor, coil, and signal transmission chain type. All measurements showed good reproducibility over time. Uniformity and slice thickness failed at some sites. Scanners that upgraded the signal transmission chain showed a decrease in geometric distortion along the slice encoding direction. Inter-vendor differences were observed in uniformity and geometric measurements along the slice encoding direction (i.e. ellipse's ratio). CONCLUSIONS: Use of the ACR phantoms highlighted issues that triggered interventions to correct performance at some sites and to improve the longitudinal stability of the scanners. This is relevant for establishing precision levels for future multisite studies of qMRI biomarkers.


Data Accuracy , Humans , Reproducibility of Results
20.
Neurosci Biobehav Rev ; 142: 104915, 2022 11.
Article En | MEDLINE | ID: mdl-36244505

The autonomic nervous system regulates dynamic body adaptations to internal and external environment changes. Capitalizing on two different algorithms (that differ in empirical assumptions), we scrutinized the meta-analytic convergence of human neuroimaging studies investigating the neural basis of peripheral autonomic signal processing. Among the selected studies, we identified 42 records reporting 44 different experiments and testing 758 healthy individuals. The results of the two different algorithms converge in identifying the bilateral dorsal anterior insula and midcingulate cortex as the critical areas of the central autonomic system (CAN). Applying an unbiased approach, we were able to identify a single condition-independent functional circuit that supports CAN activity. Partially overlapping with the salience network this functional circuit includes the bilateral insular cortex and midcingulate cortex as well as the bilateral inferior parietal lobules. Remarkably, the critical regions of the CAN observed in this meta-analysis overlapped with the salience network as well as regions commonly reported across different cognitive and affective neuroimaging paradigms and regions being dysregulated across different mental and neurological disorders.


Brain Mapping , Brain , Humans , Brain Mapping/methods , Brain/physiology , Magnetic Resonance Imaging/methods , Neuroimaging , Gyrus Cinguli/physiology , Cerebral Cortex/diagnostic imaging
...